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Abstract--An analytical solution, describing homogenized coefficients for composite materials with per- 
iodic cylindrical inclusions of square section domain, has been obtained by asymptotic methods and Pade 

approximants for any size of inclusions and its conductivity. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

One of the main tasks of the theory of dispersed media 
is a theoretical prediction of the effective transport 
properties. The subject we wish to discuss in this paper 
has a long history, dating back to Maxwell [2]. The 
problem may be formulated in a number of math- 
ematically equivalent ways, but here we shall discuss 
it in the language of heat conductivity. We wish to 
determine the effective conductivity 2 of an infinite 
simple cubic lattice of identical macroscopic cubic 
inclusions (holes in particular case), immersed in a 
matrix. In ref. [1] is displayed a table showing light 
distinct physical problems, which may be solved by 
analogous mathematical methods. One of these is the 
above-mentioned elastic constant, while other involve 
calculating the dielectric and constants, the magnetic 
permeability, and electric conductivity, etc. 

The calculation of 2 for a general type of composite 
was originally discussed by Maxwell [2], who con- 
sidered each particle of the composite as an isolated 
dipole. The second-order approximation was due to 
Rayleigh [3], who took into account particle moments 
up to the octupole and calculated the effective trans- 
port coefficients from a truncated system of linear 
algebraic equations. An historical review of the 
subject, including an exhaustive list of references, was 
compiled in refs [1, 4]. 

In the 1970s composite materials with regularly 
spaced cylindrical inclusions became the subject of 

interest [5-8] owing to their new applications, such as 
absorbers of solar energy [5]. Composite materials 
with square or rectangular fibers were studied in refs 
[9-11]. In refs [9] and [10], methods of nets and finite 
elements were used, respectively. In ref. [11], a limiting 
case for large (close to the maximal value) rectangular 
cross-section cylindrical cavities was studied by 
asymptotic procedure, and simple analytical 
expressions for effective parameters were produced. It 
is worth noting that numerical methods, in some cases, 
give satisfied solutions [9], but, in general, its use is 
not simple. 

In much research the so-called three-phase model 
(TPM) is used [12-14]. Due to this approach we 
replace all periodic structures, with the exception of 
one cell, by homogenized media with unknown 
characteristics (Fig. 1). From the mathematical point 
of view it leads to the replacement of the periodicity 
conditions to the conditions of junction of cell with 
homogenized media. Then we come to the problem of 
two-phase inclusions in the infinite domain. It gives 
the possibility of using the method of boundary form 
perturbations, replaced in the first approximation 
contour of any inclusion on the spherical one. 

The power-series expansion has been used to con- 
struct Pade-approximants and continued fraction rep- 
resentation of the effective conductivity in ref. [15]. 
Continued fractions are successfully used in the theory 
of composite materials as for calculations of effective 
constants and for estimation of upper and lower 

175 



176 I.V. ANDRIANOV et al. 

erning relations may be written as follows : 

Au + = f  i n f P  Au = j  inf~ (1) 

cgu + . (gu 
u ~ = u -  O~-='~-Jnn onaf~ (2) 

u = 0 on c')D (3) 

Fig. I. Three-phase model of the periodic structures. 

bounds for it. Neither of the above-mentioned 
methods yield accurate results for a system of perfectly 
conductive, nearly touching spheres. In order to 
describe such a system, in ref. [8], we have derived an 
asymptotic formula. However, the validity range of 
this formula is not known. Moreover, there still 
remains a certain parameter range which is covered 
neither by the asymptotic formula nor by the solutions 
based assumption of small concentration of 
inclusions. 

As shown in ref. [16], two-point Pade approximants 
(TPPA) may be effectively used for the study of the 
effective heat conductivity 2 of a periodic square array 
of nearly touching cylinders of the conductivity 
embedded in a matrix material of the conductivity. A 
sequence of TPPA was constructed for the effective 
conductivity of the system. The TPPA form a 
sequence of rapidly converging upper and lower 
bounds on the effective conductivity. 

This paper aims to predict the effective conductivity 
of two-phase material, which consists of a regular 
array of parallelepipeds embedded in a homogeneous 
continuous phase referred to as a matrix, and is organ- 
ized as follows. In Section 2 we describe the homo- 
genization procedure. TPM is used for the solving of 
the so-called local problem in Section 3. A description 
of the asymptotic procedure for the case of large 
inclusions is given in Section 4. In Section 5 we use 
Pade approximants to obtain analytical expressions 
for an effective parameter, containing all asymptotics 
for any limiting value of volume and rigidity. In 
Section 6, we present two-sides estimation. Section 7 
discusses the advantages and limitations of our 
method in the light of the results from the previous 
sections. 

2. GOVERNING RELATIONS AND 
HOMOGENIZATION PROCEDURE 

We study the effective parameters of a periodic 
array (period 2) of cylinders with square cross-section 
(side length 2a) embedded in a matrix material. Oov- 

Here, the indices ' + '  and ' - '  denote the matrix (f~+) 
and elastic inclusion ( f ~ )  ; 2 = G /G + ; n is the outer 
normal to the contour of inclusion ~f~i; ~ is the 
boundary of domain fl (~ = f~+w f~ , typical size 
2L). We also denote ~ = I /L 0:<< 1); ~ = e  ix, 

The study of such problems is important from a 
theoretical, as well as a numerical, point of view. 
Because of the complicated structure of the multiply- 
connected domain, any kind of calculation is difficult 
to perform. It we treat the boundary value problem 
we have to impose the boundary condition on the 
boundary of the inclusions, which are numerous. So, 
we would like to approximate the given problem by a 
homogenized problem on the domain without 
inclusions. By the method of asymptotic development, 
a problem on a periodically perforated domain is 
reduced to solving problems in the 'basic cell' and in 
the domain without holes. 

The theory of homogenization has been developed 
by many authors [11, 17] (we refer to these pub- 
lications just quoted for bibliographical references). 
The main problem in this field is in the solving of the 
so-called cell (or local) problem. This problem has 
usually been treated by the numerical method. We 
have used TPM, singular perturbation and TPPA for 
solving the cell problem and have constructed an 
approach in this paper. 

The operators ~/~x and ~/~y applied to functions 
u -+ become 

c~/~x = e /ax  + ~: ',~/o~ O/oy = ~/93,,+ e- '  e/@. (4) 

Let us represent the solution in the form of a formal 
expansion 

9 + 
u ± = u0 (x, y) + ~u~ (x, y, ~, ~) + e-uf (x, y, ~, ~/) + ,  ' - -. 

(5) 

Substituting series (5) into boundary value prob- 
lems (1)-(3), taking into account relations (4) and 
splitting it in respect to the powers of e, anyone can 
obtain the recurrent sequence of boundary value prob- 
lems. The local problem is formulated for the cell as 
follows : 

Au? = 0  in~,+ Au~ = 0  in~--  

8u~ ~uF OUo 
E = u ,  0 ~ - ) ~ = ( 2 - 1 ) c ~ -  n on~gfl, (6) 
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~3u~ L Ou~ 

(7) 

is the outer normal in fast variables. 

3. TPM SOLUTION OF CELL PROBLEM 

For  the solving of the local problem we use TPM. 
Then we come to the problem of two-phase inclusions 
in the infinite domain. Using the method of boundary  
form perturbations, we replace in the first approxi- 
mation a square contour on the circle one and come 
to the following boundary  value problem 

A u ( = 0  in~,.+ Au? = 0  inf2F 

A~7, = 0  i n f i  (8) 

u ( = u ~  f o r r = 2 a x / n  (9) 

~u+'~u~ I ~  x u° 1 
~r z ~ r  = ( 2 -  1) cos 0 + ~yy sin 0 

[u,-- ,~7, ;  2 ~ 2 ]  f o r r = 2 , ~  (10) 

gal " fo r r  Go. (11) bl I ---~ 0 ; (?--~- ---~ U --+ 

The solution of (8) (11) may be represented in the 
form 

u? ~- A ~ r c o s O +  A : r s i n O  

~1 = D1/r  cos 0 + Dz/r sin 0 

u~( = [ B , r + C 1 / r ] c o s O + [ B 2 r + C 2 / r ]  sin0. (12) 

Here 

A1 = - [1 +42A] ~3uo 
©x 

c3u0 
B~ = - [1 + 2 ( 2 +  1)2A] 

C~ = 8/na2(2 - 1))~A ~--~ 

C3Uo 
DI = 4/n[1 +2[a2(2 - 1 ) + 2 + l ] A ] ~ x x  

i = [ [ ~ . - l ] [ 2 + l ] a 2 - [ . ~ + l ] [ 2 + l ] ]  ' 

A2 =A1 B z - - B I  C2 = C i  

~ ~Uo ~ ~Uo 1 
D2 = Di L ~ x @_]. 

For the determination of an effective parameter of 
homogenized media we use the equation 

,Hu~ l + ,~,Hu? l + ~.o[a,] = f 

where ~(u) = A,,u0 + 2z~u~ + A¢,tt 2 ; Z~xy, AC, are the 
Laplace operators in 'slow' and 'fast' variables; 

= I~2/~)X~ + ~ 2 / ~ y ~ q  ; a n d  t h e  o p e r a t o r  o f  averaging 

is: 

(~ )= I ~  : 

where •* = gL .+ w ~2i w ~.  
Then the homogenized equation may be written in 

the form 

Au0 + I ~  d~ dr/ 

and an unknown effective parameter may be obtained 
from the linear algebraic equation as follows 

~ 2(1 + a 2 ) + l - - a  2 
2 = q = (13) 

2 ( 1 - a 2 ) +  1 + a  2 " 

Let us consider various asymptotic expressions aris- 
ing from equation (13). 

(1) a ~ 0. for any value of 2 we have 

q = 1 + 2 ( 2 - 1 ) / ( 2 + 1 ) a  2 --, 1. 

In other words, in limit we have homogeneous media 
with an effective parameter equal to the matrix charac- 
teristics. In particular : 

(2) 2 ~ 0 (inclusions of small conductivity, per- 
foration in limit) 

q = 1 - 2a 2 + 42a 2. 

(3) 2 --* ~ ,  i.e. for inclusions of large conductivity 

q = 1 + 2 a  2 -4a2 /2 .  

(4) a --* 1. For  any value of 2 we have 

q = 2 + ( 1 - a ) ( 1 - 2 2  ) ~ 2 

i.e. in limit we have an homogeneous media with an 
effective parameter equal to the inclusion charac- 
teristics. In particular : 

(5) 2 --* 0 (inclusions of small conductivity) 

q = l - a + 2 .  

(6) 1 << 2 << 1 / ( 1 - a )  (inclusions of large but finite 
conductivity) 

q = 2 ( 1 - 2 ( 1  - a ) ) .  

(7) 2--, 0---inclusions of small conductivity, per- 
foration in limit. Then 

q = (1 - -a2) / (1  + a  2) + 4a22/(1 + a2) 2 . 

(8) a << 1--for small holes 
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q = 1 --2a 2 q-4a22. 

(9) a -~ 1--for  large inclusions 

q = 1 - a + 2 .  

It coincides with known results for perforations [11]. 
(10) 2 ~  1; the parameters of  the matrix and 

inclusions differ slightly 

q = l + ( 2 - 1 ) a  2 -+ 1 

i.e. in limits we have homogeneous media. 
(11) 2--+ or. In this case, the conductivity of  

inclusions tends to infinity. 

q = (1 + a2)/(1 - a 2) -4a2/ (2(1  - a2) 2) 

(12) Fora<<  1 

q = 1 + 2 a  2 -4a2/)~.  

u? = u? 0u~, #u ,  &0 
:.- -,~- =(;.-l) a7 

f o r q = a .  (14) 

For  the condition of  periodic continuation, let us rep- 
resent it as follows : 

u?, = 0  f o r ~ / = a .  (15) 

The solution of  boundary value problem (14)-(15) is 

u~ = A1 + B,~l ui- = Drq  (16) 

where 

~u0 ~u0 
A; = [ l - 2 A ] ~ y  B, = - [ 1 - 2 A l l y  

A c~u0 D, = - [ 1 -  ] ~ -  A = [ a + 2 ( 1 - a ) ]  ~ 
c y  

(13) For  a ~ 1 and 1 << 1 / ( l - a )  << 2 

q = 1 / ( l - - a ) - -  1. 

The comparison of  known perturbation [l l]  and 
numerical [10] results with our calculations confirms 
the great accuracy of  the approach proposed. 

The effective parameter, q, we obtain from the homo-  
genized equation 

.~(1 -- a 2 q-a 3) +a2(1 --a)  
(17) 

q = 2(1 - - a ) + a  

In the various limiting case we have : 
(1) a ~ 1, then for any value of  2 we have 

4. SOLUTION OF CELL PROBLEM FOR LARGE 
INCLUSIONS 

Let us now consider a -~ 1 (large inclusions, Fig. 2). 
Here we cannot use the previous approach, but the 
smallness of  the parameter thickness of  the wall 
between two holes (see Fig. 2), may be taken into 
account. Then we may construct an asymptotic solu- 
tion, using singular perturbation technique, similar to 
that proposed in ref. [18]. Thanks to the symmetry, 
we may consider each strip (see Fig. 2), separately, and 
obtain a solution for only one of  them, for example, 
~ 5 .  For  this strip it may be easily shown that u+~ 
may be neglected in comparison with uT;,,, 

a2u+~ 
= 0  i n f ~  2Au7 = 0  i n ~  0q 2 

q = 2 +  (1 - - a ) ( 1 - 2 2 )  --* 2. 

This result coincides with the TPM approach. 
(2) 2 - + 0  

q = a ( l - a ) + 2 ( 1 - a + a Z ) / a  

that corresponds in the limiting case to the perforated 
media. 

(3) a -+ 1 

q = 1 - a + 2  

it coincides with the prediction of  TPM and for the 
case of  perforations [11]. 

(4) 2 --+ 1, for any value of  a we have 

q = 1 + a ( 2 -  1)(1 - a q - a  2) -+ 1. 

Fig. 2. Model of structures with large inclusions. 

(5) 2 ~ oc, inclusions of  infinite conductivity, 

q = (1 - a  2 +a3) / ( l  - -a)  --a(1 - - a + a 2 ) / ( ( l  - a)22). 

(6) a ~ 1 and 1 << 1 / ( l - a )  << 2, 

q =  1 / ( 1 - a ) - l .  

These asymptotics coincide with the prediction of  
TPM. Thus, we may conclude that TPM predicts cor- 
rectly all limiting values of  the effective parameter. 
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5. THREE- AND TWO-POINT PADE- 
APPROXIMANTS 

Practically any physical or mechanical problem, 
whose parameters include the variable parameter ~, 
can be approximately solved as it approaches zero or 
infinity. How can this 'limiting' information be used 
in the study of a system at the intermittent values of 
c? This problem is one of the most complicated in the 
asymptotic analysis. In many instances the answer to 
it is alleviated by many-point Pade approximants [19]. 

The notion of three-point Pade approximants is 
defined by Baker and Graves-Morris [19]. Let 

F(e)= a y  when e --, 0 (18) 
i - -0  

F(e) --- ~ b~(- 1 +~)~ when e ~ 1 
i - 0  

F(e) = 

(19) 

~ c i e  when e ~ c~. (20) i 

i = 0  

approximants represented by the Three-point Pade 
function 

F(e) = a,e* flke k 
\i~0 i 

in which k~, k 2 and k3 ( k l + k z + k 3 = r n + n + l )  
coefficients of expansion in the Taylor series when e 
a, e--*b and e--* c) coincide with the corresponding 
coefficients of the series (18), (19) and (20), respec- 
tively. 

Below we will use, for a-* 0, the well-known 
Voight-Reiss estimations [14] 

q =  l + a  2 f o r2~oG (21) 

q = l - a  2 for2-- ,0  (22) 

and evident relation 

q = l  f o r 2 =  1. (23) 

Let us match expressions (21)-(23) due to variable 2, 
using three-point Pade approximants 

1 -- a2 +,].+ ). 2 

q -- 1 +2+22(1--a2)  " (24) 

For a ~ 1 we use the asymptotic formula (17). 
Then we match expressions (17) and (24), due to 

variable a, by two-point Pade approximants and 
obtain 

(1 +2+22)  --a(l  +.~2) + a2,~2 
q = (25) 

(1 + 2 + 2 2 ) - a ( 1  +22) + a  2 

From the formula (25) all above-mentioned limiting 
asymptotics for any value of a and 2 may be obtained. 
The values of coefficient q (25) are in good agreement 
with the results obtained by TPM. So, the comparison 
of homogenized coefficients due to the size of 
inclusions (with fixed value of L) shows maximal dis- 

crepancies (not exceeding 10%) for some intermediate 
value between 'small' and 'large' size--a -~ 0.5. This 
discrepancy decreases with decreasing difference 
between the conductivity of the matrix and the 
inclusions. For a fixed size of inclusion maximal dis- 
crepancies (not exceeding 10%) are in limiting case-- 
cavities and inclusions of infinite conductivity-- and 
f o r a ~  0.5. 

6. TWO-SIDES ESTIMATIONS 

Two-sides estimations obtained by Hashin and 
Shtrikman are widely used in the theory of composite 
materials [14]. It is very useful in many cases, but, 
unfortunately, it is not when taking into account the 
inclusions form, and in limiting for conductivity cases 
(2 --, 0 and 2 ~ ~o) gives trivial bounds. As will be 
shown below, Pade approximants matching give the 
possibility of estimating effective parameters for given 
forms of inclusions for any value of size and con- 
ductivity. 

As a governing relation for an effective parameter 
we chose TPM solution (13). For any value of a, the 
formula (25) gives upper bound of TPM for 2 < 1 
and low bound for 2 > 1. Let us obtain low bounds 
of TPM for 2 < 1 and upper bounds for 2 > 1. 

Let us suppose that inclusion small (a --* 0) and to 
use solution for small circle inclusion, obtained in ref. 
[20] by Schwarz approach [21] (two approximation 
taking into account). This solution gives low bound 
for small conductivity of inclusions and upper, for 
large. Now we will suppose that the radius of inclusion 
is the function of variables, i.e. a = a(~, ~/). Then the 
solution of the local problem is 

u ~ = - ( 2 - 1 ) / ( 2 + 1 ) ( ~ @ ~  0u0 '~ 

u~ = u~, + u h  

u~-t = - ( 2 -  1 ) / ( 2 +  1)[~/(~ 2 +t/2)  

~u0 _0.25nQ(a 2 +q2) ~?~-~ 

u~, = u i ~ 2 ( ~ t / ;  x ~ y ) .  (26) 

After the use of routing homogenization procedure, 
one obtains an expression for the homogenized 
coefficient 

q = 1 + (2 -- 1) (2 + 1 )a 2 ( 1 + ~/4 + 7r/6a -- 5 ~/12a 2 ). 

(27) 

Matching due to the size of the inclusion on asymp- 
totic expression for large inclusion (17), with obtain- 
ing for small inclusions solution (27) ( for this purpose 
we use two-point Pade approximants), we have 

4(1 + 2 ) - 4 ( 1  + 2)a + 2(4+ 7r)a 2 - 2 ~ a  3 
q = (28) 

4(1 +)~) -4(1  + 2 ) a +  (4 + 7r)a 2 --~a 3 
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Fig. 3. Dependence of homogenized parameter due to size of 
inclusions for small inclusion conductivity 2 = 0.0001. 
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Fig. 5. Dependence of homogenized parameter due to size of 
inclusions for large inclusion conductivity 2 = 100. 
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a 

Fig. 4. Dependence of homogenized parameter due to size of 
inclusions for middle inclusion conductivity 2 = 2. 

Formula  (28) gives low bounds  of  T M P  for 2 < 1 and  

upper,  f for 2 > 1. 
Simultaneously using expressions (25) and  (28) 

gives two-sides est imations for an  effective pa ramete r  
for any value of  size inclusion and  its conductivity,  
and the discrepancy between it does not  exceed 10%, 
even in l imiting cases (2 --+ 0 ; ), --+ oo and a - 0.5). 

7. NUMERICAL RESULTS 

Some numerical  results are shown in Figs. 3-8, 
where the effective conduct ivi ty  values obta ined  are 
due to T P M  marked  as curve 1 and  obta ined  by for- 
mula  (25) and  (27) as curve 2,3, respectively. In Figs. 
3-5, the influence of  inclusions size is analyzed. The 
value of  2 equall ing 0.0001, corresponds  to the com- 
posite mater ial  with cavities, 2 = 2 is the conductivi ty 
of  the matr ix  and  inclusions of  the same order,  

= 100 are the inclusions of  infinite conductivity.  In 
Figs. 6-8, the influence of  inclusions conduct ivi ty  is 
analyzed for its various sizes : small (a = 0.25), middle 
(a = 0.5) and  large (a = 0.75). 

8. CONCLUSION 

T P M  may  be effectively used for the calculat ion of  
effective parameters  for a periodic array of  cylinders 

2 ]  ............ ~" 3 

q 1 .~.,. ............ :r .......... ~ ............................ 

0 I I J 
0.0001 0.01 I 100 10000 

Fig. 6. Dependence of homogenized parameter due to con- 
ductivity of inclusions for small inclusion size 2 = 0.25. 

h l  

I I I 
0 .0001 0.01 1 100 10000  

Fig. 7, Dependence of homogenized parameter due to con- 
ductivity of inclusions for middle inclusion size ,~ = 0.5. 

3 ............. 2 ~'~ ...................... 

q 2- - .... 3 /  

_i/ I- 

0 l I I 
0.0001 0.0! I IO0 I0000 

Fig. 8. Dependence of homogenized parameter due to con- 
ductivity of inclusions for large inclusion size 2 = 0.75. 

with  square  cross-section embedded  in a mat r ix  
material .  TPPA gives effective two-sides estimates for 
homogenized coefficients for the p rob lem under  con- 
sideration. 



Homogenization procedure and Pade approximations 181 

REFERENCES 

1. Batchelor, G., Transport properties of two-phase 
materials with random structures. Annual Review of Fluid 
Mechanics, 1974, 6, 227-255. 

2. Maxwell, J. C., A Treatise on Electricity and Magnetism. 
Oxford University Press, Oxford, 1904. 

3. Rayleigh, J. W., On the influence of obstacles arranged 
in rectangular order on the properties of the medium. 
Philosophical Magazine Series, 1892, 5(34), 481-502. 

4. Torquato, S., Random heterogeneous media: micro- 
structure and improved bounds on effective properties. 
Applied Mechanics Re~,iew, 1991, 44, 37-76. 

5. Nitham~ B. W. and Sammut, R. A., Refractive index of 
array of spheres and cylinders. Journal ~f Theoretical 
Biology, 1976, 56, 125-149. 

6. McPhedran, R. C. and McKenzie, D. R., Electrostatic 
and optical resonances of arrays of cylinders. Applied 
Physics, 1980, 23, 223 235. 

7. Perrinns, W. T., McPhedran, R. C. and McKenzie, D. 
R., Transport properties of regular arrays of cylinders. 
Proceedings of the Royal Society o['London, 1979, A369, 
207 225. 

8. McPhedran, R. C., Poladin, L. and Milton, G. W., 
Asymptotic studies of closely spaced, highly conducting 
cylinders. Proceedings ~?[' the Royal Society of" London, 
1988, A415, 185-196. 

9. Kohanenko, Yu., Study of the composites, reinforced 
by rectangular fibers, by nets method. Doklady NAN 
Ukraine, Mathematics, Natural and Technical Sciences, 
1993, 9, 60 64 (in Russian). 

10. Bourgat, J., Numerical experiments of the homo- 
genization method for operators with periodic 
coefficients. In Lectures Notes in Maths, 1979, 704, 330- 
356. 

11. Baklvalov, N. and Panasenko, G., Averaging Processes 
in Periodic Media. Mathematical Problem in Mechanics 
of Composite Materials. Kluwer Academic Publishers, 
Dordrecht, 1989. 

12. Kerner, E. H., The elastic and thermoelastic properties 
of composite media. Proceedings of the Physics Society, 
1956, 69, 808-820. 

13. Van der Pol, C., On the rheology of concentrated dis- 
persions. Rheology Acta, 1958, I, 198-211. 

14. Christensen, R., Mechanics of Composite Materials. 
Wiley, New York, 1979. 

15. May, S., Tokarzewski, S., Zachara, A. and Cichocki, 
B., Continued fraction representation for the effective 
thermal conductivity coefficient of a regular two-com- 
ponent composite. International Journal (?f Heat and 
Mass Transfer, 1994, 37(4), 2165 2173. 

16. Andrianov, 1., Blawzdziewicz, J. and Tokarzewski, S., 
Effective conductivity for densely parked highly con- 
densed cylinders. Applied Physics A, 1994, 59, 601 604. 

17. Bensoussan, A., Lions, J.-L. and Papanicolaou, G., 
A©,mptotic Methods in Periodic Structures. North- 
Holland, New York, 1978. 

18. Andrianov, I. V., Shevchenko, V. V. and Kholod, E. 
G., Asymptotic methods in the statics and dynamics 
of perforated plates and shells with periodic structures. 
Technische Mechanik, 1995, 15(2), 141-157. 

19. Baker, G. and Graves-Morris, P., Pade approximants. 
Part lI. Extensions and Applications. Addison-Wesley, 
London. 1981. 

20. Andrianov, I. V. and Starushenko, G. A., Asymptotic 
methods in the theory of perforated membranes of non- 
homogeneous structures. Enyineerin,q Transction, 1995, 
43(1-2), 5 18. 

21. Kantorovich, L. V. and Krylov, V. I., Approximate 
Methods t~f Higher Analysis. Fizmatgiz, Moscow, 1962. 


